

High g shock Isotron® accelerometer

Model 2255B

STANDARD TOLERANCE INCHES (MILLIMETERS) .XX = +/- .02 (.X = +/- .5) .XXX = +/- .010 (.XX = +/- .25)

Key features

- Low impedance output
- Far-field, high-g shock
- Built-in electronic LP filter
- Strain isolated
- Solder terminals

Description

The Endevco® model 2255B is a miniature, lightweight piezoelectric accelerometer with integral electronics, designed specifically for far-field high-g shock measurement on structures and test articles. The unit features an electronic second order low-pass filter between the sensor and the amplifier input stage to prevent saturation due to accelerometer resonance.

The model 2255B features Endevco's Piezite® crystal element, operating in annular shear mode, which exhibits excellent output stability over time. A unique strain isolation design internal to the sensor assembly reduces any strain input due to bending motion in the mounting surface. This accelerometer incorporates an internal hybrid signal conditioner in a two-wire system, which transmits its low impedance voltage output through the same cable that supplies the required constant current power. Both the output and signal ground terminals are electrically isolated from the mounting surface. The accelerometer features an integral 1/4-28 mounting stud and two solder-pin terminals for output connection. Small gauge, light weight hook-up wires are provided for error-free operation. The Model number suffix indicates acceleration sensitivity in mV/g; i.e., 2255B-01 features output sensitivity of 0.1 mV/g.

Endevco signal conditioner models 4416C, 133, 2792B, or 2793, set to \pm 10 mA, are recommended for use with this accelerometer.

ENDEVCO www.endevco.com Tel: +1 (866) ENDEVCO [+1 (866) 363-3826]

High g shock Isotron® accelerometer

Model 2255B

Specifications

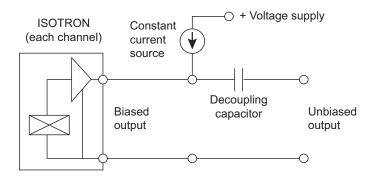
The following performance specifications conform to ISA-RP-37.2 (1964) and are typical values, referenced at +75°F (+24°C), 4 mA, and 100 Hz, unless otherwise noted. Calibration data, traceable to National Institute of Standards and Technology (NIST), is supplied.

g	±5000	±50,000
-		
mV/q	1.0	0.1
mV/g	0.75	0.075
		0.15
111479		0.15
111		300
KHZ	2/0	300
Hz		2 to 20,000
%	≤5	
%	<2	<0.5
	Acceleration direction into base of unit proc	luces positive output
Vdc		
•		0.5
equiv. g rms	U.U5	0.5
μs	1 T	
	Signal ground connected to inner case but isolated from outer housing	
Vdc	+18 to +24	
mΑ	+2 to +20	
		<0.5
300	``	10.0
-67°E + 0 +257°E / 55°C + 0 +125°C)		
1 1		F0
		50
equiv. g pk/µ strain		1.0
		10 (18.0)
equiv. g rms	5	12
	See outline drawing	
am (oz)		
J (- /		
lbf in (Nm)	•	
IDI-III (INIII)	30 (3.3)	
mV/g		
dB	20 Hz to 30 kHz	
mV/g	1000 g half-sine shock pulse	
	mV/g kHz Hz % % Vdc Ω V equiv. g rms μs Vdc mA sec kg pk equiv. g pk/μ strain equiv. g pk/°F (/°C) equiv. g rms gm (oz) lbf-in (Nm)	mV/g 1.25 See typical amplitude response kHz 270 Hz .5 to 20,000 See typical curve ≤5 % 4cceleration direction into base of unit proce +8.5 to +11.5 Ω 4cceleration direction into base of unit proce +8.5 to +11.5 Ω 5100 ±5 equiv. g rms 0.05 μs 10 Signal ground connected to inner case but in Vdc mA 10 Signal ground connected to inner case but in Vdc mA 418 to +24 +2 to +20 20 467°F to +257°F (-55°C to +125°C Epoxy sealed, non-hermetic kg pk equiv. g pk/μ strain equiv. g pk/μ strain equiv. g pk/γ F(γ°C) equiv. g rms 5 See outline drawing 2.0 (0.07) 17-4 PH stainless steel Gold plated solder terminal lbf-in (Nm) mV/g

High g shock Isotron® accelerometer

Model 2255B

Accessories


Product	Description	2255B-1, -01
3024-120	10ft cable assembly, twisted pair	Included
2967C	Titianium triaxial mounting block	Optional

Notes

- 1. Resonances due to different modes of vibration occur between 120kHz and 310 kHz. They are completely suppressed by the built-in low pass filter and will not affect linear response of the accelerometer.
- 2. Putting small shrink tubing over the solder joints is recommended.
- 3. All models subjected to 50,000 g proof shock prior to calibration.
- 4. Unit is calibrated by the comparison shock method described in Section 5 of S2.2-1959, American Standards Institute, on ENDEVCO Model 2925 Comparison Shock Calibrator.

Ordering information

1. Maintain high levels of precision and accuracy using Endevco's factory calibration services. Call Endevco's inside sales force at 866-ENDEVCO for recommended intervals, pricing and turn-around time for these services as well as for quotations on our standard products.

Continued product improvement necessitates that Endevco reserve the right to modify these specifications without notice. Endevco maintains a program of constant surveillance over all products to ensure a high level of reliability. This program includes attention to reliability factors during product design, the support of stringent Quality Control requirements, and compulsory corrective action procedures. These measures, together with conservative specifications have made the name Endevco synonymous with reliability.

