

PERFORMANCE SPECIFICATION ACCELEROMETER

(7280AM	7-XXX-Y	Y-ZZZ)

Document Number	Rev	Date	Entered by	Description of Change	Change Accountable Engineer	ECO
78109	Α	8/8/23	NAD	Remove Outline Drawing	JKN	54114

1.0 **DESCRIPTION**

The ENDEVCO Model 7280AM7 is a family of rugged damped piezoresistive accelerometers designed for high amplitude acceleration, vibration and shock applications. The Model 7280AM7 features minimal mass loading, broad frequency response, and minimum zero shift during a shock event.

The Model 7280AM7 uses a unique micro-machined, piezoresistive sensor with gas damping to attenuate resonant amplitudes, and mechanical stops to reduce breakage under overload conditions. The monolithic sensor incorporates the latest MEMS technology for ruggedness, stability and reliability. The accelerometer features a four-active arm bridge circuit with a nominal full-scale output of 300 mV for the -60K unit, 320 mV for the -20K unit, and 600 mV for the -2K unit (all at 10 Vdc excitation). The light case is designed to reduce the effect of mass loading for optimal frequency response. The M7 modification features a low-noise cable with protective shrink tubing for superior performance in high–shock environments.

U.S. Patent 6,988,412 applies to this unit.

2.0 CERTIFIED PERFORMANCE

All specifications assume +75°F (+24°C) and 10 Vdc excitation unless otherwise stated. The following parameters are 100% tested. Calibration data, traceable to the National Institute of Standards and Technology (NIST), are supplied.

		Units		Range Dash Number	
2.1	RANGE	g	-2k +2000	-20K ± 20000	-60k ± 60000
2.2	SENSITIVITY Minimum/Typical/Maximum at 10 Vdc Minimum/Typical/Maximum	μV/g μV/V/g	150.0/300.0/600.0 15.0/30.0/60.0	8.0/16.0/24.0 0.8/1.6/2.4	2.5/5.0/7.5 0.25/0.50/0.75

A specification of μ V/V provides a parameter specification that is independent of excitation voltage. Calculate the specification at any excitation voltage by multiplying the value by the excitation voltage. This applies to any parameter with a "unit"/V specification.

Example: 1.7 μ V/V/g is the same as 1.7 x 10 = 17.0 μ V/g at 10 Vdc excitation.

2.3	ZERO MEASURAND OUTPUT, maximum	mV/V		± 20	
2.4	RESISTANCE Input Output	Ω Ω	6500 ± 2000 6500 ± 2000	6500 ± 2500 6500 ± 2500	6500 ± 2500 6500 ± 2500

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.0

4.1

4.2

			Units	-2k	Range D -20K	Oash Number	-60k
0	TYPICAL PERFORMANCE CHAR The following parameters are established			nple units and are not	100% teste	d:	
1	NATURAL FREQUENCY		kHz	25	100		130
2	ZERO SHIFT After Full Range Shock (Typ/Max) After 3X Range Shock (Typ/Max)		μV/V μV/V	6/120 120/600	3/60 60/30	0	9/60 60/300
3	OVERRANGE LIMIT without dama	ige	g	+10000	± 800	00	±240000
	The overrange limit is a design safe See additional notes in paragraph		operating the u	unit above its rated ra	nge is not re	commended.	
4	AMPLITUDE LINEARITY [2]		±2% of readin	ig up to acceleration of	correspondin	ng to the recomm	nended range.
5	FREQUENCY RESPONSE ± 1 dB		kHz	DC to 10 kHz	DC	to 10 kHz	DC to 20 kHz
6	TRANSVERSE SENSITIVITY % 3 This specification is based on analy the solder joints can affect the mag	ysis. In actu		the flatness of the mo	ounting surfa	ice as well as th	e thickness of
7	DAMPING (over operating temp. ra	ange)	of critical	0.5	0.05		0.05
8	THERMAL ZERO SHIFT over operating temperature range		%FSO/°C %FSO/°F		0.06 0.033		
	For short duration tests, auto zeroin For extended duration testing, it is					tion data in post	t-processing.
9	THERMAL SENSITIVITY SHIFT over operating temperature range		%/°C %/°F		- 0.2 - 0.11		
10	WARM-UP TIME				2 minu	ites after power-	-on
11	MECHANICAL OVERTRAVEL STO	OPS	g		1.5x ra	ange minimum	
0	ELECTRICAL						
1 MAX. EX	EXCITATION VOLTAGE (CITATION VOLTAGE WITHOUT D	AMAGE	Vdc Vdc		10.0 12.0		
	For maximum accuracy, calibration e.g. the sensitivity of the unit at 5.0 The excitation voltage to be used in	Vdc is not	exactly 1⁄2 of th	e sensitivity at 10.0 V	dc due to se		
2	NOISE maximum (dc to 10 kHz)		µVrмs		10		
EDVED279-	I REV G	OCUME	NT 78109 F	REVISION A		Page 2 of	4

4.3	ISOLATION RESISTANCE	100 $\text{M}\Omega$ min at 50 VDC between leads shorten together and cable shield or cable
5.0	PHYSICAL	
5.1	CASE, MATERIAL	17-4 CRES
5.2	WEIGHT (EXCLUDING CABLE)	grams 4.0
5.3	CABLE	(4) 34 AWG SPC, shielded, Silicone jacket. Cable weight 0.10 oz/ft.
5.4	IDENTIFICATION	Serial number on side of unit; "ENDEVCO- 7280AM7" and dash number on lid.
5.5	MOUNTING	4-40 high strength screws (supplied), 2X No 4 washers (supplied), 2X Recommended mounting torque, 8 \pm 2 lbf-in (0.9 N-m)

Use 8 \pm 2 lbf-in mounting torque, acoustic and high strength steel screws (1) insure intimate contact between accelerometer and mounting surface and (2) to prevent yielding of the screw and loss of preload force due to shocks. Loss of meaningful data and possible damage to the accelerometer due to rattling on its mounting surface can result from using either too high or too low a value of mounting torque.

6.0 ENVIRONMENTAL

6.1	TEMPERATURE Operating Storage	- 67°F to + 250°F (- 55°C to + 121°C) - 67°F to + 250°F (- 55°C to + 121°C)
6.2	ACCELERATION LIMITS (any direction)	

.2	ACCELERATION LIMITS (any direction)	
	Shock	4X the rated range
	Minimum haversine shock pulse duration	5X the natural period

Example: The 7280AM7-20K has a typical natural frequency of 100 kHz and a natural period of 1/100 kHz, or 10µs. The minimum haversine shock pulse duration will be 5 X 10 µs, or 50 µs.

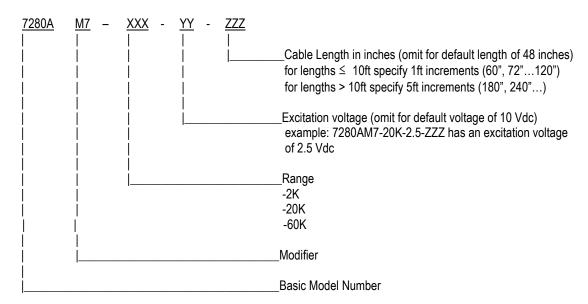
6.3	HUMIDITY	Rated to IP67
6.4	ZERO SHIFT DUE TO MOUNTING TORQUE	± 0.5 mV maximum, 0 to 10 lbf-in
6.5	MOUNTING STRAIN SENSITIVITY	Typically less than 10 μ V when tested at 250 microstrain per ISA 37.2, paragraph 6.5.

7.0 CALIBRATION DATA

Data for range, sensitivity, ZMO, input resistance and output resistance are supplied on the Calibration Certificate. Calibration will be performed at the excitation voltage provided by the customer at the time of order (see Paragraph 9.0 for ordering information). Units calibrated via POP shock at 1000g for the -2K range, and at 5000g for the -20K and -60K ranges.

8.0 ACCESSORIES

SUPPLIED	
EHW265	
EH853	
	EHW265


Washers, 2X Screws, 4-40 Allenoy Steel, 2X Or Equivalent Socket Head Cap 5/16" long, 2X

8.2 OPTIONAL Model 7980 31167

Triax Mounting Block Mounting Plate (10-32 Stud Adaptor)

9.0 <u>NOTES</u>

[1] Model Number Definition:

[2] Amplitude Linearity is verified via centrifuge testing to full scale on the -2K range, and via shock testing to full scale on the -20K and -60K ranges.